Home => ProblemSet => 3.2-21:Lomsat gelral
Problem1865--3.2-21:Lomsat gelral

1865: 3.2-21:Lomsat gelral

Time Limit: 1 Sec  Memory Limit: 128 MB  Submit: 0  Solved: 0
[ Submit ] [ Status ] [ Creator: ][ 参考程序 ]

Description

You are given a rooted tree with root in vertex 1 . Each vertex is coloured in some colour.
Let's call colour c dominating in the subtree of vertex v if there are no other colours that appear in the subtree of vertex v more times than colour c . So it's possible that two or more colours will be dominating in the subtree of some vertex.
The subtree of vertex v is the vertex v and all other vertices that contains vertex v in each path to the root.
For each vertex v find the sum of all dominating colours in the subtree of vertex v .


  • 有一棵 n 个结点的以 1 号结点为根的有根树。
  • 每个结点都有一个颜色,颜色是以编号表示的, i 号结点的颜色编号为 ci。
  • 如果一种颜色在以 x 为根的子树内出现次数最多,称其在以 x 为根的子树中占主导地位。显然,同一子树中可能有多种颜色占主导地位。
  • 你的任务是对于每一个 i∈[1,n],求出以 i 为根的子树中,占主导地位的颜色的编号和。
  • n≤105,ci≤n


Input

The first line contains integer n ( 1<=n<=105 ) — the number of vertices in the tree.
The second line contains n integers ci ( 1<=ci<=n ), ci — the colour of the i -th vertex.
Each of the next n−1 lines contains two integers xj,yj ( 1<=xj,yj<=n ) — the edge of the tree. The first vertex is the root of the tree.

Output

Print n integers — the sums of dominating colours for each vertex.

Sample Input Copy

4
1 2 3 4
1 2
2 3
2 4

Sample Output Copy

10 9 3 4

HINT



样例二:
输入:
15
1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
1 2
1 3
1 4
1 14
1 15
2 5
2 6
2 7
3 8
3 9
3 10
4 11
4 12
4 13
输出:
6 5 4 3 2 3 3 1 1 3 2 2 1 2 3

Source/Category